Corrigé rapide

Première partie

I.1 (a)
$$A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
 $\chi_A(\lambda) = -(\lambda^3 - 2\lambda^2 - \lambda + 2) = -(\lambda - 1)(\lambda - 2)(\lambda + 1).$

Trois racines (donc trois valeurs propres) distinctes. A est diagonalisable. $E_{-1}(A) = Vect(2e_1 - 3e_2 + e_3)$; $E_1(A) = Vect(-2e_1 - e_2 + e_3)$; $E_2(A) = Vect(e_1 - e_3)$.

(b)
$$B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
. $\chi_B(\lambda) = -(\lambda^3 - \lambda^2 + \lambda - 1) = -(\lambda - 1)(\lambda^2 + 1)$.

Non diagonalisable comme matrice de $M_3(\mathbb{R})$. $E_1(B) = Vect(e_1 + e_3)$. $sp_{\mathbb{C}}(B) = \{1, i, -i\}$. Diagonalisable comme matrice de $M_3(\mathbb{C})$. $E_i(B) = Vect(e_1 - (1+i)e_2 + ie_3)$; $E_{-i}(B) = Vect(e_1 - (1-i)e_2 - ie_3)$

I.2
$$M = \begin{pmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{pmatrix}$$

(a) $det(M) = -a_0$; M est inversible ssi $a_0 \neq 0$.

(a)
$$det(M) = a_0$$
, M est inversible say $a_0 \neq 0$.
(b) $\begin{vmatrix} 0 & 0 & -a_0 - Xa_1 - X^2a_2 - X^3 \\ 1 & -X & -a_1 \\ 0 & 1 & -X - a_2 \\ \chi_M(X) = -(X^3 + a_2X^2 + a_1X + a_0) \end{vmatrix} = (-a_0 - Xa_1 - X^2a_2 - X^3) \begin{vmatrix} 1 & -X \\ 0 & 1 \end{vmatrix}$

- (c) $\chi_{t_M}(X) = det({}^tM XI_3) = det({}^t(M XI_3)) = det(M XI_3) = \chi_M(X)$ M et tM ont même polynôme caractéristique, donc mêmes valeurs propres. Si M est diagonalisable, il existe D diagonale et P inversible telles que $M = PDP^{-1}$. Mais : ${}^tM = {}^t(P^{-1}){}^tD^tP$. tM est semblable à une matrice diagonale ; réciproque idem.
- (d) Soit $\alpha \in \text{Sp}(M)$. On résout le système :

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Leftrightarrow \begin{cases} y = \alpha x \\ z = \alpha y \\ -a_0 x - a_1 y - a_2 z = \alpha z \end{cases}$$

$$\Leftrightarrow \left\{ \begin{array}{c} y = \alpha x \\ z = \alpha^2 x \\ -a_0 x - a_1 \alpha x - a_2 \alpha^2 x = \alpha^3 x \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} y = \alpha x \\ z = \alpha^2 x \\ \chi_M\left(\alpha\right) x = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} y = \alpha x \\ z = \alpha^2 x \end{array} \right.$$

L'espace propre est une droite vectorielle dirigée par $e_1 + \alpha e_2 + \alpha^2 e_3$.

(e) Les espaces propres de la matrice tM sont des sev de dimension 1. La somme des dimensions est donc égale au nombre de valeurs propres. La matrice tM est diagonalisable ssi la somme des dimensions est 3 donc ssi il y a trois valeurs propres distinctes. Comme M et tM ont mêmes valeurs propres et sont simultanément diagonalisables, M est diagonalisable si et seulement si M possède trois valeurs propres distinctes.

(f) $Z = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. 2 est valeur propre de Z. $E_2(Z)$ est de dimension 2.

Z ne peut être semblable à une matrice du type précédent.

- I.2 (a) dim(E) = 3; 4 vecteurs de E forment une famille liée. La famille $(x, f(x), f^2(x), f^3(x))$ est liée.
 - (b) x est non nul, la famille $(f^0(x)) = (x)$ est libre. On étudie les familles successives $(x, f(x), (x, f(x), f^2(x)))$. Si la première est liée p = 0; si la première est libre et la deuxième liée, p = 1. Si les deux sont libres, p = 2 compte-tenu de la remarque de (a). On a $0 \le p \le 2$. La famille $(x, ..., f^{p+1}(x))$ est liée. Il existe p + 2 scalaires non tous nuls tels que $\sum_{k=0}^{p+1} \alpha_k f^k(x) = \overrightarrow{0}$. On ne peut avoir $\alpha_{p+1} = 0$ car sinon la famille

 $(x,...,f^p(x))$ serait liée. Notons $b_k = \frac{\alpha_k}{\alpha_{k+1}}$. On a : $f^{p+1}(x) = \sum_{k=0}^p (-b_k) f^k(x)$.

(c) Soit F l'espace vectoriel engendré par les $f^k(x)$, k = 0..p. Ils forment une base de F d'image $(f(x), ..., f^{p+1}(x))$. Les images sont des éléments de F. F et stable par f. La matrice de f/F dans cette base est :

$$\tilde{M} = \begin{pmatrix} 0 & & (0) & -b_0 \\ 1 & \ddots & & \vdots \\ & \ddots & \ddots & \vdots \\ (0) & & 1 & -b_p \end{pmatrix}$$

- (d) $P_x(X) = \chi_{\tilde{M}}(X) = (-1)^{p+1}(X^{p+1} + b_p X^p + ... + b_1 X + b_0)$. D'après (b), $P_x(f)(x) = \overrightarrow{0_E}$.
- (e) Complétons la base de F pour obtenir une base $\mathcal B$ de E. On aura :

$$M_{\mathcal{B}}(f) = \begin{pmatrix} \boxed{\tilde{M}} & * \\ (0) & \boxed{M_1} \end{pmatrix}$$

 $\chi_f(X) = \chi_M(X) = \chi_{\tilde{M}}(X) \times \chi_{M_1}(X) = P_x(X) \times \chi_{M_1}(X)$ Comme $P_x(f)(x) = \overrightarrow{0}$, $\chi_f(f)(x) = (\chi_{M_1}(f) \circ P_x(f))(x) = \overrightarrow{0_E}$. Ceci est vrai pour tout $x \in E$. L'endomorphisme $\chi_f(f)$ est nul.

Deuxième partie $\forall n \in \mathbb{N}, \quad u_{n+3} + au_{n+2} + bu_{n+1} + cu_n = 0 \quad (\mathcal{R})$

II.1 (a) La suite (u) vérifie la relation (\mathcal{R}) si et seulement si :

$$\forall n \in \mathbb{N}, \quad U_{n+1} = \begin{pmatrix} u_{n+1} \\ u_{n+2} \\ u_{n+3} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -c & -b & -a \end{pmatrix} \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix} = AU_n$$

A est la transposée d'une matrice compagnon.

(b) D'après la première partie $\chi_A(X) = -(X^3 + aX^2 + bX + c)$. D'après le théorème de Cayley-Hamilton, $A^3 + aA^2 + bA + cI_3 = (0)$.

- (c) Si (u) vérifie (\mathcal{R}) , on a, par récurence sur n que, $\forall n \in \mathbb{N} : U_n = A^n U_0$.
- II.2 Soit $P(X) = X^3 + aX^2 + bX + c$. P(A) = (0).
 - (a) On peut écrire : $X^n = P(X)Q_n(X) + R_n(X)$ (*) (division euclidienne). $A^n = P(A) \times Q(A) + R_n(A) = R_n(A)$.
 - (b) Si P possède trois racines distinctes dans K $\alpha_1, \alpha_2, \alpha_3$, on évalue la relation (*) en ces scalaires et, si $R_n(X) = a_n X^2 + b_n X + c_n$, on a :

$$\begin{cases} a_n \alpha_1^2 + b_n \alpha_1 + c_n = \alpha_1^n \\ a_n \alpha_2^2 + b_n \alpha_2 + c_n = \alpha_2^n \\ a_n \alpha_3^2 + b_n \alpha_3 + c_n = \alpha_3^n \end{cases}$$

(c) $(\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3) \neq 0$ est le déterminant du système précédent. Le système a une solution unique.

(d)
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & 1 & 5 \end{pmatrix}$$
. $\chi_A(X) = -(X - 1)(X + 1)(X + 5)$.
 $c_n = -\frac{5^n}{24} + \frac{5}{8} + \frac{5(-1)^n}{12}$ $b_n = \frac{1}{2} - \frac{(-1)^n}{2}$
 $a_n = \frac{5^n}{24} - \frac{1}{8} + \frac{(-1)^n}{12}$ $A^n = a_n A^2 + b_n A + c_n I_3$
(e) $u_n = -\left(\frac{1}{24}u_0 - \frac{1}{24}u_2\right) 5^n + \left(\frac{5}{12}u_0 - \frac{1}{2}u_1 + \frac{1}{12}u_2\right) (-1)^n + \frac{5}{8}u_0 + \frac{1}{2}u_1 - \frac{1}{8}u_2$
Si $u_0 = 1, u_1 = 0, u_2 = 1, \forall n \in \mathbb{N}, \quad u_n = \frac{(-1)^n + 1}{2}$

Troisième partie

- III.1 $det(C_P) = (-1)^{n+1}a_0$. C_P est inversible si et seulement si $a_0 = P(0) \neq 0$.
- III.2 On remplace la ligne L_1 de la matrice par $L_1 + XL_2 + X^2L_3 + ... + X^{n-1}L_n$.

$$\begin{vmatrix} 0 & \cdots & \cdots & 0 & -\sum_{k=0}^{n-2} a_k X^k - X^{n-1} (a_{n-1} + X) \\ 1 & -X & \ddots & \vdots & -a_1 \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & -X & -a_{n-2} \\ 0 & \dots & 0 & 1 & -a_{n-1} - X \end{vmatrix} = (-1)^n P(X)$$

- III.3 Soit Q un polynôme de $K_n[X]$. Il existe une matrice A de $\mathcal{M}_n(K)$ telle que $\chi_A = Q$ si et seulement si $(-1)^n Q(X)$ est un polynôme unitaire de degré n.
- III.4 (a) $\operatorname{Sp}(C_P) = \operatorname{Sp}({}^t\!C_P)$ car même polynôme caractéristique.
 - (b) $\lambda \in \operatorname{Sp}({}^tC_P)$. La résolution du système donne successivement :

$$x_2 = \lambda x_1$$
 $x_3 = \lambda x_2$... $x_n = \lambda x_{n-1}$ $-\sum_{k=0}^{n-1} a_k x_{k+1} = \lambda x_n$
 $x_2 = \lambda x_1$ $x_3 = \lambda^2 x_1$... $x_n = \lambda^{n-1} x_1$ $-\sum_{k=0}^{n-1} a_k \lambda^k x_1 = \lambda^n x_1$

$$x_2=\lambda x_1$$
 $x_3=\lambda^2 x_1$... $x_n=\lambda^{n-1}x_1$ $P(\lambda)x_1=0=0\times x_1$ L'espace propre est de dimension 1. Un vecteur directeur est : $e_1+\lambda e_2+\lambda^2 e_3+\ldots+\lambda^{n-1}e_n$

- (c) La somme des dimensions des espaces propres est exactement égale au nombre de valeurs propres car les sev propres sont tous de dimension 1. tC_P est diagonalisable si et seulement si P est scindé sur K et a toutes ses racines simples.
- (d) Si P admet n racines $\lambda_1, \lambda_2, \ldots, \lambda_n$ deux à deux distinctes, tC_P aussi et cette matrice est diagonalisable. La famille des vecteurs propres trouvés en question (a) est libre. La matrice des ces vecteurs exprimés dans la base canonique a un determinant non nul qui est le déterminant de

Vandermonde
$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \dots & \lambda_n^2 \\ \dots & \dots & \dots & \dots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \dots & \lambda_n^{n-1} \end{vmatrix}.$$

Quatrième partie : Localisation des racines d'un polynôme

Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{C})$, on pose pour tout entier $1 \leq i \leq n$:

$$r_i = \sum_{j=1}^n |a_{i,j}| \text{ et } D_i = \{z \in \mathbb{C}, |z| \le r_i\}.$$

IV.1 Soit $\lambda \in \operatorname{Sp}(A)$ et X un vecteur propre associé. $AX = \lambda X$. Pour tout i on a :

$$\sum_{j=1}^{n} a_{i,j} x_j = \lambda x_i \text{ et } |\lambda| \times |x_i| \leqslant \sum_{j=1}^{n} |a_{i,j}| |x_j| \leqslant \sum_{j=1}^{n} |a_{i,j}| \max_{j} |x_j| = r_i ||X||_{\infty}$$

IV.2 X, vecteur propre, est non nul. Il existe un indice i_0 tel que $||X||_{\infty} = |x_{i_0}| > 0$.

Pour cet indice $|\lambda| \leqslant r_{i_0} \frac{||X||_{\infty}}{|x_{i_0}|} = r_{i_0}. \ \lambda \in D_{i_0}.$

$$\forall \lambda \in \operatorname{Sp}(A), \exists i \in \{1, ..., n\} / \lambda \in D_i. \text{ On a bien : } \operatorname{Sp}(A) \subset \bigcup_{k=1}^n D_k.$$

- IV.3 Soit $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0 \in \mathbb{C}[X]$. P est le polynome caractéristique d'une matrice compagnon. Ses racines, valeurs propres de la matrice, vérifient la condition précédente avec ici : $r_1 = |a_0|, r_2 = 1 + |a_1|, \ldots, r_n = 1 + |a_{n-1}|$. Toutes les racines de P sont dans le disque fermé de centre 0 et de rayon $R = \max\{|a_0|, 1 + |a_1|, 1 + |a_2|, \ldots, 1 + |a_{n-1}|\}$.
- IV.4 a, b, c, d quatre entiers distincts et non nuls; $(E): n^a + n^b = n^c + n^d$.

Quitte à échanger l'ordre on suppose que a est la plus grand des quatre entiers. Les solutions de l'équation sont les racines dans \mathbb{N} du polynôme unitaire de degré a, $P = X^a + X^b - X^c - X^d$. Les coefficients de ce polynôme sont tous de valeur absolue au maximum égale à 1. Les racines sont donc dans la boule fermée de centre 0 de rayon 2. Celles qui sont entières positives ne peuvent être que 0,1 ou 2. 1 et 0 sont toujours racines. 2 ne l'est pas. En effet : supposons par exemple que c est le plus petit des quatre entiers

 $2^a + 2^b = 2^c + 2^d \Rightarrow 2^{a-c} + 2^{b-c} = 1 + 2^{d-c}$. Impossible . (entier pair \neq entier impair).